1. How Do I Learn to Read Blueprints?
2. Why Should I Think "Plan, Elevation and Section"?
3. What is an Architectural Scale?
4. What is an Engineering Scale?
5. Why Specs Should be Read?
6. Why aren't CAD Drawings all Done in 3D?
7. What Public Domain Documents are Available for Further
Study?
8. Tricks of the Trade & Rules of Thumb for Blueprint Reading:
My high school physics said the language of science
is mathematics. Since I never spoke that language too well, I wasn’t
much of a scientist. I’ve been an effective contractor, though, and have
learned the language of construction: drawings. We communicate in job
trailers by pointing to the significant sections of drawings. We make
sketches, often quite rough, to show what we’re trying to say.
In short, if you want to advance in construction, learn to read drawings well and to make rough sketches. It’s a simple language to learn (I’m the least visual person I know and I learned it), but it does take some studying.
So, how do you learn to read blueprints? It's a little like eating elephants. You might ask me, "How do you eat an elephant?" The answer, of course, is "One bite at a time."
Novice blueprint readers look at the entire page of words, lines and weird symbols and get overwhelmed. It's easy at that point for your brain to shut down and you just say, "I can't read blueprints." If you tried to read an entire page of words at the same time, you couldn't do that either. You simply have to calm down, start at one corner and begin figuring out what you can learn from the blueprint. The main difference between a blueprint and a page of text is that you know to start at the top left corner on a page of text, then to left to right till the bottom of the page. Blueprints don't have a place you need to start.
So where should you start?
The most basic concept about reading blueprints, and the one to keep
in mind no matter how good you get at reading blueprints, is "Plan,
Elevation and Section". Your first thought when looking a drawing should
be, "Is this a Plan, an Elevation or a Section?" First, some quick
definitions:
When I'm standing in a job trailer, and we are trying to resolve some problem and someone starts drawing a sketch, my first question almost always is, "Are you drawing a plan view, a side view or a section view?" I know many people don't ask that question and often just looks at lines on the paper, having no idea what the sketcher is trying to convey. Learn to ask that question first, whether you are looking at a new set of blueprints or a sketch done by a friend.
The rest of the information below will help you understand some other specific aspects of understanding blueprints. The most important thing to remember, though, is just to do one thing at a time. Don't try to understand everything at once, no one can do that, so you won't be able to either. Take some time, relax, look at each symbol and word and try to understand what it's there for. Most everything on a blueprint is there for a purpose, so just slowly go through the symbols and words, getting their purpose into your head.
I often go through a new set of blueprints on a project with a yellow highlighter, reading and highlighting every word, number or symbol. When I've highlighted an entire sheet, I've got a fairly clear idea of what the designer and draftsman were trying to convey.
We use an Architect's Scale when dimensions or measurements are to be
expressed in feet and inches. So the gradations on an Architect's Scale
are as follows:
We use an Engineer's Scale whenever dimensions are in feet and
decimal parts of a foot, or when the scale ratio is a multiple of 10. So
an Engineer's Scale has an inch broken into 10, 20, 30, 40, 50 and 60
gradations.
The most boring part of Construction Supervision may be reading Specs
and General Conditions. So lots of folks just don't do it. They make
that decision lightly, but the ramifications can be huge. Too many times
Design Professionals hide little time-bombs in the Specs, or Special
Conditions, that become important as the project progresses.
Perhaps it's a milestone in the schedule that must be achieved by a certain date. Or a requirement to never work before 8am in the morning or on weekends. Sometimes the project clean-up requirements can be quite different from what might make sense to you, but those are the rules for that project.
So at the start of a project, the Construction Supervisor should obtain his or her own copy of all the project documents and read them. After doing this on a couple of projects, you will learn what you can skim through and what needs more careful attention. Don't just blow off this duty, though.
The Project Specifications, General Conditions, Special Conditions and Construction Contracts constitute the rules for the project. It's easier to win the game when you know the rules.
Blueprints traditionally got drawn as two dimensional (2D) drawings.
Architects and Engineers drew in 2D because 3D was too complicated. When
Computed Aided Design (CAD) became popular in the 1980s and 1990s, we
assumed most drawings would now get drawn in 3D. But they don't. Things
tend to change slowly in the design and construction industry. The
typical set of plans produces today don't vary that much from plans
produced generations ago.
So why aren't most projects designed in 3D? I believe most Design Professionals are proficient at producing 2D drawings, but often don't understand the details of how contractors build buildings. As a young Design Professional working in a Design Office, I know I didn't.
So the complexity of producing 3D drawings carries the task of actually knowing how the project will be built. The level of understanding must be much higher for the draftsman. The technology works, but the learning curve for the Design Professionals is steep. On the other hand, many Owners try to limit their design costs and don't feel 3D drawings would add enough value to cover the cost of production of the documents.
The current state of affairs, then, has most projects being built on 2D drawings. The more complex projects, though, increasingly use 3D for architectural, structural, mechanical and electrical. Perhaps the main advantage of 3D is the crash feature. By modeling all the elements, the hundreds of crashes between beams, columns, ducts, pipes and the many other features in a building can be determined during design, then resolved in the office rather than in the field, with crews standing and waiting.
The future will belong to 3D...it's just not clear how long it will take for us to get there.
The US Department of Army
Carpentry Field Manual does a great job
in the first three chapters explaining basic drawings, construction
planning and bills of materials. If you are somewhat
new to construction, take some time and review this excellent resource.
The official name is US Army FM 5-426.
The US Navy produced a Blueprint Reading and Sketching course that has 200 pages of good basic instruction. The technical name of the course is NAVEDTRA 14040 May 1994. I've included a few paragraphs below that are helpful.
A building project may be broadly divided into two major phases, the
design phase and the construction phase. First, the architect conceives
the building, ship, or aircraft in his or her mind, then sets down the
concept on paper in the form of presentation drawings, which are usually
drawn in perspective by using pictorial drawing techniques. Next, the
architect and the engineer work together to decide upon materials and
construction methods. The engineer determines the loads the supporting
structural members will carry and the strength each member must have to
bear the loads. He or she also designs the mechanical systems of the
structure, such as heating, lighting, and plumbing systems. The end
result is the preparation of architectural and engineering design
sketches that will guide the draftsmen who prepare the construction
drawings. These construction drawings, plus the specifications, are the
chief sources of information for the supervisors and craftsmen who carry
out the construction.
GENERAL PLANS
General plans contain information on the size, material, and
makeup of all main members of the structure, their relative
position and method of connection, as well as the attachment of
other parts of the structure. The number of general plan
drawings supplied is determined by such factors as the size and
nature of the structure, and the complexity of operations.
General plans consist of plan views, elevations, and sections of
the structure and its various parts. The amount of information
required determines the number and location of sections and
elevations.
FABRICATION DRAWINGS
Fabrication drawings, or shop drawings, contain necessary
information on the size, shape, material, and provisions for
connections and attachments for each member. This information is
in enough detail to permit ordering the material for the member
concerned and its fabrication in the shop or yard. Component
parts of the members are shown in the fabrication drawing, as
well as dimensions and assembly marks.
ERECTION DRAWINGS
Erection drawings, or erection diagrams, show the location and
position of the various members in the finished structure. They
are especially useful to personnel performing the erection in
the field. For instance, the erection drawings supply the
approximate weight of heavy pieces, the number of pieces, and
other helpful data.
FALSEWORK DRAWINGS
The term falsework refers to temporary supports of timber or
steel that sometimes are required in the erection of difficult
or important structures. When falsework is required on an
elaborate scale, drawings similar to the general and detail
drawings already described may be provided to guide
construction. For simple falsework, field sketches may be all
that is needed.
CONSTRUCTION PLANS
Construction drawings are those in which as much construction
information as possible is presented graphically, or by means of
pictures. Most construction drawings consist of orthographic
views. General drawings consist of plans and elevations drawn on
relatively small scale. Detail drawings consist of sections and
details drawn on a relatively large scale; we will discuss
detail drawing in greater depth later in this chapter. A plan
view is a view of an object or area as it would appear if
projected onto a horizontal plane passed through or held above
the object area. The most common construction plans are plot
plans (also called site plans), foundation plans, floor plans,
and framing plans. We will discuss each of them in the following
paragraphs. A plot plan shows the contours, boundaries, roads,
utilities, trees, structures, and other significant physical
features about structures on their sites. The locations of the
proposed structures are indicated by appropriate outlines or
floor plans. As an example, a plot may locate the comers of a
proposed structure at a given distance from a reference or base
line. Since the reference or base line can be located at the
site, the plot plan provides essential data for those who will
lay out the building lines. The plot also can have contour lines
that show the elevations of existing and proposed earth
surfaces, and can provide essential data for the graders and
excavators. A foundation plan (fig. 7-9) is a plan view of a
structure projected on a imaginary horizontal plane passing
through at the level of the tops of the foundations. Framing
plans show the dimension numbers and arrangement of structural
members in wood-frame construction. A wall framing plan provides information
for the studs, corner posts,
bracing, sills, plates, and other structural members in the
walls. Since it is a view on a vertical plane, a wall framing
plan is not a plan in the strict technical sense. However, the
practice of calling it a plan has become a general custom. A
roof framing plan gives similar information with regard to the
rafters, ridge, purlins, and other structural members in the
roof. A utility plan is a floor plan that shows the layout of
heating, electrical, plumbing, or other utility systems. Utility
plans are used primarily by the ratings responsible for the
utilities, and are equally important to the builder. Most
utility installations require that openings be left in walls,
floors, and roofs for the admission or installation of utility
features. The builder who is placing a concrete foundation wall
must study the utility plans to determine the number, sizes, and
locations of openings he or she must leave for utilities.
ELEVATIONS
Elevations show the front, rear, and sides of a structure
projected on vertical planes parallel to the planes of the
sides. Elevations
give you a number of important vertical dimensions, such as the
perpendicular distance from the finish floor to the top of the
rafter plate and from the finish floor to the tops of door and
window finished openings. They also show the locations and
characters of doors and windows. However, the dimensions of
window sashes and dimensions and character of lintels are
usually set forth in a window schedule.
SECTION VIEWS
A section view is a view of a cross section. The term is confined to views of cross sections
cut by vertical planes. A floor plan or foundation plan, cut by
a horizontal plane, is a section as well as a plan view, but it
is seldom called a section. The most important sections are the
wall sections.
Starting at the bottom, you learn that the footing will be
concrete, 1 foot 8 inches wide and 10 inches high. The vertical
distance to the bottom of the footing below FIN GRADE (finished
grade, or the level of the finished earth surface around the
house) varies-meaning that it will depend on the soil-bearing
capacity at the particular site. The foundation wall will
consist of 12-inch concrete masonry units (CMU) centered on the
footing. Twelve-inch blocks will extend up to an unspecified
distance below grade, where a 4-inch brick facing (dimension
indicated in the mid-wall section) begins. Above the line of the
bottom of the facing, it is obvious that 8-inch instead of
12-inch blocks will be used in the foundation wall. The building
wall above grade will consist of a 4-inch brick facing tier,
backed by a backing tier of 4-inch cinder blocks. The floor
joists consist of 2 by 8s placed 16 inches OC and will be
anchored on 2 by 4 sills bolted on the top of the foundation
wall. Every third joist will be additionally secured by a 2 by
1/4 strap anchor embedded in the cinder block backing tier of
the building wall. Flooring will
consist of a wood finished floor on a wood subfloor. Inside
walls will be finished with plaster on lath (except on masonry,
which would be with or without lath as 7-16 directed). A minimum
of 2 vertical feet of crawl space will extend below the bottoms
of the floor joists. The middle wall section
gives similar information for a similar building constructed
with wood-frame walls and a double-hung window. The third wall
section gives you similar information for a
similar building constructed with a steel frame, a casement
window, and a concrete floor finished with asphalt tile.
DETAILS
Detail drawings are on a larger scale than general drawings, and
they show features not appearing at all, or appearing on too
small a scale, in general drawings. The wall sections are
details as well as sections, since they are drawn on a
considerably larger scale than the plans and elevations. Framing
details at doors, windows, and cornices, which are the most
common types of details, are nearly always shown in sections.
Details are included whenever the information given in the
plans, elevations, and wall sections is not sufficiently
“detailed” to guide the craftsmen on the job.
SPECIFICATIONS
The construction drawings contain as much information about a
structure as can be presented graphically. A lot of information
can be presented this way, but there is more information that
the construction craftsman must have that is not adaptable to
the graphic form of presentation. Information of this kind
includes quality criteria for materials (for example, maximum
amounts of aggregate per sack of cement), specified standards of
workmanship, prescribed construction methods, and so on. When
there is a discrepancy between the drawings and the
specifications, always use the specifications as authority. This
kind of information is presented in a list of written
specifications, familiarly known as the specs. A list of
specifications usually begins with a section on general
conditions. This section starts with a general description of
the building, including type of foundation, types of windows,
character of framing, utilities to be installed, and so on. A
list of definitions of terms used in the specs comes next,
followed by certain routine declarations of responsibility and
certain conditions to be maintained on the job.